Date: _____ Classwork 10.1

Systems of Equations (Graphing)

Aim: How can we find the solution to multiple linear functions?

❖ If two or more equations are given, we call this a **system of equations**. The **solution** to a system of equations consists of the set of all ordered pairs, (x, y) that satisfy (make true) all of the equations in the system. This point is called the **point of intersection** (P.O.I.).

Example 1: Solve the system of equations below by graphing. Show all work and check your answers.

$$y = x + 3$$

$$y = -2x + 6$$

$$M = 1 b = 3$$

$$m = -2$$
 $b = 6$

Step 1: Graph both linear equations.

Step 2: Identify the POI.

Step 3: Check that the solution is a point on both lines.

$$4 = (1) + 3$$

 $4 = 4\sqrt{ }$

$$4 = -2(1) + 6$$

 $4 = -2 + 6$
 $4 = 4$

The solution is: (14)

A system of equations may have one one solution, no solution, or infinitely many solutions.

One Solution (3,1)

no solution *never intersect

$$y = 3x + 1$$

$$m = 3$$

$$y = 3x - 5$$

$$m = 3$$

The solution is: NO SOIU FION

Example 3: Solve the system of equations below by graphing. Show all work and check your answers. **L**

$$y + 2x = 5$$

$$m = -2$$
 b= 5

$$y+2x \ne 5$$

 $-2x$ $-2x$ $y=2/=x$
 $y=-2x+5$ $y=x+2$
 $y=-2x+6$ $y=x+2$
 $y=-2x+6$ $y=x+2$

$$m=1$$
 $b=2$

$$3+2(1)=5$$
 $3-2=1$ $3+2=6$ $1=1$

 \rightarrow The solution is: (1,3)

Example 4: Which of the following is a **solution** to the system of equations consisting of y = 4x + 11 and y = -x + 1?